Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Neurotransmitters are crucial for the proper functioning of neural systems, with dopamine playing a pivotal role in cognition, emotions, and motor control. Dysregulated dopamine levels are linked to various disorders, underscoring the need for accurate detection in research and diagnostics. Single-stranded DNA (ssDNA) aptamers are promising bioreceptors for dopamine detection due to their selectivity, improved stability, and synthesis feasibility. However, discrepancies in dopamine specificity have presented challenges. Here, we surface-functionalized a nano-plasmonic biosensing platform with a dopamine-specific ssDNA aptamer for selective detection. The biosensor, featuring narrowband hybrid plasmonic resonances, achieves high specificity through functionalization with aptamers and passivation processes. Sensitivity and selectivity for dopamine detection are demonstrated across a wide range of concentrations, including in diverse biological samples like protein solutions, cerebrospinal fluid, and whole blood. These results highlight the potential of plasmonic “aptasensors” for developing rapid and accurate diagnostic tools for disease monitoring, medical diagnostics, and targeted therapies.more » « less
- 
            Monitoring chemical levels is crucial for safeguarding both the environment and public health. Elevated levels of ammonia, for instance, can harm both humans and aquatic ecosystems, often indicating contamination from agriculture, industry, or sewage. Developing portable, high-resolution, and affordable methods for in situ monitoring of ammonia is thus imperative. Plasmonic sensors offer a promising solution, detecting ammonia by correlating changes in their optical response to the target analyte’s concentration. While they are highly sensitive and can be fabricated in a variety of portable and user-friendly formats, some still require reagents or expensive optical equipment, which hinder their widespread adoption. Here, we present a self-assembled nanoplasmonic colorimetric sensor capable of directly detecting ammonia concentrations in aqueous matrices. The proposed sensor exploits the plasmonic resonance of the nanostructures to transduce changes in the chemical environment into alterations in color, offering a label-free method for real-time analysis. The sensor is fabricated using a self-assembling technique compatible with low-cost mass production based on aluminum and aluminum oxide, ensuring affordability and avoiding the use of other toxic chemicals. We developed a model to predict ammonia concentrations based on visible color change of the sensor, achieving a detection limit of 8.5 ppm. Furthermore, to address the need for on-site detection, we integrated smartphone technology for real-time color change analysis, eliminating the need for expensive, bulky optical instruments. Indeed, our approach offers a cost-effective, portable, and user-friendly solution for ammonia detection in water without the need for chemical reagents or spectrometers, making it ideal for field applications. Interestingly, this platform extends its applicability beyond ammonia detection, enabling the monitoring of various chemicals using a smartphone, without the need for any additional costly equipment.more » « less
- 
            The accurate detection, classification, and separation of chiral molecules are pivotal for advancing pharmaceutical and biomolecular innovations. Engineered chiral light presents a promising avenue to enhance the interaction between light and matter, offering a noninvasive, high-resolution, and cost-effective method for distinguishing enantiomers. Here, we present a nanostructured platform for surface-enhanced infrared absorption–induced vibrational circular dichroism (VCD) based on an achiral plasmonic system. This platform enables precise measurement, differentiation, and quantification of enantiomeric mixtures, including concentration and enantiomeric excess determination. Our experimental results exhibit a 13 orders of magnitude higher detection sensitivity for chiral enantiomers compared to conventional VCD spectroscopic techniques, accounting for respective path lengths and concentrations. The tunable spectral characteristics of this achiral plasmonic system facilitate the detection of a diverse range of chiral compounds. The platform’s simplicity, tunability, and exceptional sensitivity holds remarkable potential for enantiomer classification in drug design, pharmaceuticals, and biological applications.more » « less
- 
            Abstract More than half of pharmaceutical drugs in use are chiral, necessitating accurate techniques for their characterization. Enantiomers, molecules with mirrored symmetry, often exhibit similar physical traits but possess distinct chemical and biological implications. This study harnesses the strong light‐matter interaction induced by “superchiral” light to perform Surface‐Enhanced Infrared Absorption (SEIRA) induced vibrational circular dichroism measurements in the mid‐infrared spectral region. Utilizing a nanopatterned pixelated array of achiral plasmonic nanostructures, the system allows unique identification of enantiomers and biomolecules. Tunability of plasmon resonance facilitates spectral variation of the optical chirality over a wide infrared range, enabling development of a unique chiral “barcoding” scheme to distinguish chiral molecules based on their infrared fingerprint. This simple, yet robust sensor presents a low‐cost solution for chiral mapping of drugs and biomolecules.more » « less
- 
            Nanostructured plasmonic materials can lead to the extremely compact pixels and color filters needed for next-generation displays by interacting with light at fundamentally small length scales. However, previous demonstrations suffer from severe angle sensitivity, lack of saturated color, and absence of black/gray states and/or are impractical to integrate with actively addressed electronics. Here, we report a vivid self-assembled nanostructured system which overcomes these challenges via the multidimensional hybridization of plasmonic resonances. By exploiting the thin-film growth mechanisms of aluminum during ultrahigh vacuum physical vapor deposition, dense arrays of particles are created in near-field proximity to a mirror. The sub-10-nm gaps between adjacent particles and mirror lead to strong multidimensional coupling of localized plasmonic modes, resulting in a singular resonance with negligible angular dispersion and ∼98% absorption of incident light at a desired wavelength. The process is compatible with arbitrarily structured substrates and can produce wafer-scale, diffusive, angle-independent, and flexible plasmonic materials. We then demonstrate the unique capabilities of the strongly coupled plasmonic system via integration with an actively addressed reflective liquid crystal display with control over black states. The hybrid display is readily programmed to display images and video.more » « less
- 
            Abstract Detection of long wave infrared (LWIR) light at room temperature is a long‐standing challenge due to the low energy of photons. A low‐cost, high‐performance LWIR detector or camera that operates under such conditions is pursued for decades. Currently, all available detectors operate based on amplitude modulation (AM) and are limited in performance by AM noises, including Johnson noise, shot noise, and background fluctuation noise. To address this challenge, a frequency modulation (FM)‐based detection technique is introduced, which offers inherent robustness against different types of AM noises. The FM‐based approach yields an outstanding room temperature noise equivalent power (NEP), response time, and detectivity (D*). This result promises a novel uncooled LWIR detection scheme that is highly sensitive, low‐cost, and can be easily integrated with electronic readout circuitry, without the need for complex hybridization.more » « less
- 
            Abstract Nanostructured materials have enabled new ways of controlling the light–matter interaction, opening new routes for exciting applications, in display technologies and colorimetric sensing, among others. In particular, metallic nanoparticles permit the production of color structures out of colorless materials. These plasmonic structural colors are sensitive to the environment and thus offer an interesting platform for sensing. Here, a self‐assembly of aluminum nanoparticles in close proximity of a mirror is spaced by an ultrathin poly(N‐isopropylacrylamide) (PNIPAM) layer. Hybridizing the plasmonic system with the active polymer layer, a thermoresponsive gap‐plasmon architecture is formed that transduces changes in the temperature and relative humidity of the environment into color changes. By harnessing the environmentally induced structural changes of PNIPAM, it was estimated from the finite difference time domain simulation that the resonance can be tuned 7 nm per every 1 nm change in thickness, resulting in color variation. Importantly, these fully reversible changes can be used for reusable powerless humidity and temperature colorimetric sensing. Crucially if condensation on the structure happens, the polymer layer is deformed beyond recovery and the colors are washed away. We leverage this effect to produce tamper‐proof dew labels that a straightforward smartphone app can read by taking a picture.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
